Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(8): e2212171120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780526

RESUMO

We used a model for permafrost hydrology informed by detailed measurements of soil ice content to better understand the potential risk of abrupt permafrost thaw triggered by melting ground ice, a key open question associated with permafrost response to a warming Arctic. Our spatially resolved simulations of a well-characterized site in polygonal tundra near Utqiagvik, Alaska, agree well with multiple types of observations in the current climate. Projections indicate 63 cm of bulk subsidence from 2006 to 2100 in the strong-warming Representative Concentration Pathway 8.5 climate. Permafrost thaw as measured by the increase in active layer thickness (ALT)-the thickness of the soil layer that thaws each summer-is accelerated by subsidence, but the effect is relatively small. The ALT increases from the current-day value of approximately 50 cm to approximately 180 cm by 2100 when subsidence is included compared to about 160 cm when it is neglected. In these simulations, previously identified positive feedbacks between subsidence and thaw are self-limiting on decadal time frames because landscape runoff and increasing evapotranspiration result in drier tundra with weaker surface/atmosphere coupling. These results for a tundra site that is representative of large swathes of the Alaska North Slope suggest that subsidence is unlikely to lead to abrupt thaw over large areas. However, subsidence does have significant effects on the hydrology of polygonal tundra. Specifically, subsidence increases landscape runoff, which helps maintain streamflow in the face of increased evapotranspiration but also causes drier tundra conditions that could have deleterious effects on sensitive Arctic wetland ecosystems.

2.
Proc Natl Acad Sci U S A ; 119(15): e2118879119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377798

RESUMO

Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)­specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass' ecological niche and thus putatively represents a valuable breeding resource.


Assuntos
Aclimatação , Panicum , Poliploidia , Aclimatação/genética , Variação Genética , Panicum/genética , Panicum/fisiologia , Tetraploidia
5.
Sci Adv ; 7(9)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627437

RESUMO

Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.

6.
Nature ; 590(7846): 438-444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505029

RESUMO

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Assuntos
Aclimatação/genética , Biocombustíveis , Genoma de Planta/genética , Genômica , Aquecimento Global , Panicum/genética , Poliploidia , Biomassa , Ecótipo , Evolução Molecular , Fluxo Gênico , Pool Gênico , Introgressão Genética , Anotação de Sequência Molecular , Panicum/classificação , Panicum/crescimento & desenvolvimento , Estados Unidos
7.
Glob Chang Biol ; 26(12): 6631-6643, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33064359

RESUMO

Soils represent the largest terrestrial reservoir of organic carbon, and the balance between soil organic carbon (SOC) formation and loss will drive powerful carbon-climate feedbacks over the coming century. To date, efforts to predict SOC dynamics have rested on pool-based models, which assume classes of SOC with internally homogenous physicochemical properties. However, emerging evidence suggests that soil carbon turnover is not dominantly controlled by the chemistry of carbon inputs, but rather by restrictions on microbial access to organic matter in the spatially heterogeneous soil environment. The dynamic processes that control the physicochemical protection of carbon translate poorly to pool-based SOC models; as a result, we are challenged to mechanistically predict how environmental change will impact movement of carbon between soils and the atmosphere. Here, we propose a novel conceptual framework to explore controls on belowground carbon cycling: Probabilistic Representation of Organic Matter Interactions within the Soil Environment (PROMISE). In contrast to traditional model frameworks, PROMISE does not attempt to define carbon pools united by common thermodynamic or functional attributes. Rather, the PROMISE concept considers how SOC cycling rates are governed by the stochastic processes that influence the proximity between microbial decomposers and organic matter, with emphasis on their physical location in the soil matrix. We illustrate the applications of this framework with a new biogeochemical simulation model that traces the fate of individual carbon atoms as they interact with their environment, undergoing biochemical transformations and moving through the soil pore space. We also discuss how the PROMISE framework reshapes dialogue around issues related to SOC management in a changing world. We intend the PROMISE framework to spur the development of new hypotheses, analytical tools, and model structures across disciplines that will illuminate mechanistic controls on the flow of carbon between plant, soil, and atmospheric pools.


Assuntos
Carbono , Solo , Ciclo do Carbono , Clima , Plantas
8.
Nat Clim Chang ; 9: 852-857, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35069807

RESUMO

Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

10.
Glob Change Biol Bioenergy ; 8(5): 1000-1014, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27668013

RESUMO

The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008-2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars - under low or high species diversity, with or without nitrogen inputs - and quantified establishment, biomass yield, and biomass composition. In one experiment ('agronomic trial'), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment ('diversity gradient'), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in biomass cropping systems without compromising yields and that genotypic mixtures could help provide high, stable yields of high-quality biomass feedstocks.

11.
Environ Microbiol ; 18(6): 2039-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26914164

RESUMO

Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystem scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% of bacterial taxa were shared between their site and diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.


Assuntos
Bactérias/classificação , Biodiversidade , Pradaria , Microbiologia do Solo , Bactérias/isolamento & purificação , Panicum
12.
New Phytol ; 201(1): 31-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23952258

RESUMO

The rhizosphere priming effect (RPE) is a mechanism by which plants interact with soil functions. The large impact of the RPE on soil organic matter decomposition rates (from 50% reduction to 380% increase) warrants similar attention to that being paid to climatic controls on ecosystem functions. Furthermore, global increases in atmospheric CO2 concentration and surface temperature can significantly alter the RPE. Our analysis using a game theoretic model suggests that the RPE may have resulted from an evolutionarily stable mutualistic association between plants and rhizosphere microbes. Through model simulations based on microbial physiology, we demonstrate that a shift in microbial metabolic response to different substrate inputs from plants is a plausible mechanism leading to positive or negative RPEs. In a case study of the Duke Free-Air CO2 Enrichment experiment, performance of the PhotoCent model was significantly improved by including an RPE-induced 40% increase in soil organic matter decomposition rate for the elevated CO2 treatment--demonstrating the value of incorporating the RPE into future ecosystem models. Overall, the RPE is emerging as a crucial mechanism in terrestrial ecosystems, which awaits substantial research and model development.


Assuntos
Carbono/metabolismo , Ecossistema , Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Solo , Simbiose , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Modelos Biológicos , Plantas/efeitos dos fármacos , Plantas/metabolismo
13.
PLoS One ; 8(10): e77880, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205010

RESUMO

Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.


Assuntos
Biomassa , Carbono/química , Ecossistema , Picea/fisiologia , Solo/química , Água/química , Simulação por Computador
14.
Environ Pollut ; 158(4): 1088-94, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19631429

RESUMO

The potential for storing additional C in U.S. Corn Belt soils - to offset rising atmospheric [CO(2)] - is large. Long-term cultivation has depleted substantial soil organic matter (SOM) stocks that once existed in the region's native ecosystems. In central Illinois, free-air CO(2) enrichment technology was used to investigate the effects of elevated [CO(2)] on SOM pools in a conservation tilled corn-soybean rotation. After 5 and 6 y of CO(2) enrichment, we investigated the distribution of C and N among soil fractions with varying ability to protect SOM from rapid decomposition. None of the isolated C or N pools, or bulk-soil C or N, was affected by CO(2) treatment. However, the site has lost soil C and N, largely from unprotected pools, regardless of CO(2) treatment since the experiment began. These findings suggest management practices have affected soil C and N stocks and dynamics more than the increased inputs from CO(2)-stimulated photosynthesis.


Assuntos
Atmosfera/química , Dióxido de Carbono/química , Carbono/química , Solo/análise , Carbono/análise , Dióxido de Carbono/análise , Ecossistema , Glycine max , Zea mays
15.
Oecologia ; 158(1): 117-27, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18690479

RESUMO

Arbuscular mycorrhizal fungi (AMF) are mutualistic with most species of plants and are known to influence plant community diversity and composition. To better understand natural plant communities and the ecological processes they control it is important to understand what determines the distribution and diversity of AMF. We tested three putative niche axes: plant species composition, disturbance history, and soil chemistry against AMF species composition to determine which axis correlated most strongly with a changing AMF community. Due to a scale dependency we were not able to absolutely rank their importance, but we did find that each correlated significantly with AMF community change at our site. Among soil properties, pH and NO(3) were found to be especially good predictors of AMF community change. In a similar analysis of the plant community we found that time since disturbance had by far the largest impact on community composition.


Assuntos
Ecossistema , Micorrizas , Microbiologia do Solo , Solo/análise , Concentração de Íons de Hidrogênio , Nitratos/análise , Plantas/microbiologia
16.
Glob Chang Biol ; 11(12): 2057-2064, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34991286

RESUMO

The general lack of significant changes in mineral soil C stocks during CO2 -enrichment experiments has cast doubt on predictions that increased soil C can partially offset rising atmospheric CO2 concentrations. Here, we show, through meta-analysis techniques, that these experiments collectively exhibited a 5.6% increase in soil C over 2-9 years, at a median rate of 19 g C m-2 yr-1 . We also measured C accrual in deciduous forest and grassland soils, at rates exceeding 40 g C m-2 yr-1 for 5-8 years, because both systems responded to CO2 enrichment with large increases in root production. Even though native C stocks were relatively large, over half of the accrued C at both sites was incorporated into microaggregates, which protect C and increase its longevity. Our data, in combination with the meta-analysis, demonstrate the potential for mineral soils in diverse temperate ecosystems to store additional C in response to CO2 enrichment.

17.
Science ; 302(5649): 1385-7, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14631037

RESUMO

Estimates of forest net primary production (NPP) demand accurate estimates of root production and turnover. We assessed root turnover with the use of an isotope tracer in two forest free-air carbon dioxide enrichment experiments. Growth at elevated carbon dioxide did not accelerate root turnover in either the pine or the hardwood forest. Turnover of fine root carbon varied from 1.2 to 9 years, depending on root diameter and dominant tree species. These long turnover times suggest that root production and turnover in forests have been overestimated and that sequestration of anthropogenic atmospheric carbon in forest soils may be lower than currently estimated.


Assuntos
Carbono/análise , Liquidambar/fisiologia , Pinus taeda/fisiologia , Raízes de Plantas/fisiologia , Solo/análise , Árvores , Atmosfera , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Ecossistema , Liquidambar/crescimento & desenvolvimento , Liquidambar/metabolismo , North Carolina , Pinus taeda/crescimento & desenvolvimento , Pinus taeda/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estações do Ano , Tennessee , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...